1,292 research outputs found

    Nuclear Astrophysics with Radioactive Beams

    Full text link
    The quest to comprehend how nuclear processes influence astrophysical phenomena is driving experimental and theoretical research programs worldwide. One of the main goals in nuclear astrophysics is to understand how energy is generated in stars, how elements are synthesized in stellar events and what the nature of neutron stars is. New experimental capabilities, the availability of radioactive beams and increased computational power paired with new astronomical observations have advanced the present knowledge. This review summarizes the progress in the field of nuclear astrophysics with a focus on the role of indirect methods and reactions involving beams of rare isotopes.Comment: 121 pages, 27 figures, 510 references, to appear in Physics Reports. Minor typos and references fixe

    Is the structure of 42Si understood?

    Get PDF
    A more detailed test of the implementation of nuclear forces that drive shell evolution in the pivotal nucleus \nuc{42}{Si} -- going beyond earlier comparisons of excited-state energies -- is important. The two leading shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which reproduce the low-lying \nuc{42}{Si}(21+2^+_1) energy, but whose predictions for other observables differ significantly, are interrogated by the population of states in neutron-rich \nuc{42}{Si} with a one-proton removal reaction from \nuc{43}{P} projectiles at 81~MeV/nucleon. The measured cross sections to the individual \nuc{42}{Si} final states are compared to calculations that combine eikonal reaction dynamics with these shell-model nuclear structure overlaps. The differences in the two shell-model descriptions are examined and linked to predicted low-lying excited 0+0^+ states and shape coexistence. Based on the present data, which are in better agreement with the SDPF-MU calculations, the state observed at 2150(13)~keV in \nuc{42}{Si} is proposed to be the (02+0^+_2) level.Comment: accepted in Physical Review Letter

    Scaling near random criticality in two-dimensional Dirac fermions

    Get PDF
    Recently the existence of a random critical line in two dimensional Dirac fermions is confirmed. In this paper, we focus on its scaling properties, especially in the critical region. We treat Dirac fermions in two dimensions with two types of randomness, a random site (RS) model and a random hopping (RH) model. The RS model belongs to the usual orthogonal class and all states are localized. For the RH model, there is an additional symmetry expressed by {H,γ}=0{\{}{\cal H},{\gamma}{\}}=0. Therefore, although all non-zero energy states localize, the localization length diverges at the zero energy. In the weak localization region, the generalized Ohm's law in fractional dimensions, d(<2)d^{*}(<2), has been observed for the RH model.Comment: RevTeX with 4 postscript figures, To appear in Physical Review

    Delay-induced Synchronization Phenomena in an Array of Globally Coupled Logistic Maps

    Get PDF
    We study the synchronization of a linear array of globally coupled identical logistic maps. We consider a time-delayed coupling that takes into account the finite velocity of propagation of the interactions. We find globally synchronized states in which the elements of the array evolve along a periodic orbit of the uncoupled map, while the spatial correlation along the array is such that an individual map sees all other maps in his present, current, state. For values of the nonlinear parameter such that the uncoupled maps are chaotic, time-delayed mutual coupling suppress the chaotic behavior by stabilizing a periodic orbit which is unstable for the uncoupled maps. The stability analysis of the synchronized state allows us to calculate the range of the coupling strength in which global synchronization can be obtained.Comment: 8 pages, 7 figures, changed content, added reference

    Spectral Properties and Synchronization in Coupled Map Lattices

    Full text link
    Spectral properties of Coupled Map Lattices are described. Conditions for the stability of spatially homogeneous chaotic solutions are derived using linear stability analysis. Global stability analysis results are also presented. The analytical results are supplemented with numerical examples. The quadratic map is used for the site dynamics with different coupling schemes such as global coupling, nearest neighbor coupling, intermediate range coupling, random coupling, small world coupling and scale free coupling.Comment: 10 pages with 15 figures (Postscript), REVTEX format. To appear in PR

    In-beam gamma-ray spectroscopy of 35Mg and 33Na

    Full text link
    Excited states in the very neutron-rich nuclei 35Mg and 33Na were populated in the fragmentation of a 38Si projectile beam on a Be target at 83 MeV/u beam energy. We report on the first observation of gamma-ray transitions in 35Mg, the odd-N neighbor of 34Mg and 36Mg, which are known to be part of the "Island of Inversion" around N = 20. The results are discussed in the framework of large- scale shell-model calculations. For the A = 3Z nucleus 33Na, a new gamma-ray transition was observed that is suggested to complete the gamma-ray cascade 7/2+ --> 5/2+ --> 3/2+ gs connecting three neutron 2p-2h intruder states that are predicted to form a close-to-ideal K = 3/2 rotational band in the strong-coupling limit.Comment: Accepted for publication Phys. Rev. C. March 16, 2011: Replaced figures 3 and 5. We thank Alfredo Poves for pointing out a problem with the two figure
    corecore